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Abstract

The Maximum Weighted Balance problem is a basic problem in network design. In this
article we exhibit a new definition of this problem and we define a polynomially bounded version
of it using scaling technique. Based on that we specify an AP-reduction between them. We also
present an approximate solution preserving approximation within 2 for MAX Polynomially
Bounded Weighted Balance. Theses results we introduce are used to prove the pertinence
of MAX Weighted Balance to APX, moreover we show a 3-approximate polynomial time
algorithm for this problem.

Key words: MAX Weighted Balance. AP-reducibility, scaling technique. approximation
algorithm, APX.

1 Introduction

Approximation algorithms are an usual strategy to solve NP-hard optimization problems. However
it is known that even to calculate approximate solutions for these problems is computationally
hard. Moreover NP-optimization problems exhibit different approximation properties which oscilate
between having a polynomial-time approximation scheme and being non-approximable within any
constant. As a consequence. the issue of determining under what conditions and by means of what
methods we can design r-approximate polynomial-time algorithms is widely recognized as being
relevant from practical and theoretical point of views.

In this paper we focus on the weighted version of the Maximum Balance problem which maxi-
mizes the number of paths that connect pairs of vertices and pass through a common edge ¢ (flow
through edge e).

In Sec. 2 we present some basic definitions. In Sec. 3 we introduce a brief survey of the Maximum
Balance and define MAX Weighted Balance in a different approach from that used in [Sal96].
We also define a polynomially bounded version of MAX Weighted Balance and specify an AP-
reduction from MAX Weighted Balance to MAX Polynomially Bounded Weighted Balance
in Sec. 4. In the following section we prove that both problems belongs to APX. We do that by
presenting a 2-approximate solution for the polynomially bounded version and we determine the
existence of a 3-approximate polynomial-time algorithm for the arbitrarily weighted version through
of an AP-reduction. We consider only positive weights and we answer an open question for the MAX
Weighted Balance. Sec. 6 presents conclusions and future work.
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2 Preliminaries

We now introduce some basic definitions useful through of this paper.

Definition 1 ([ACP95]) A NP Optimization (NPO) problem A is a fourtuple ({4,50l4,m 4,
Goal) such that:

o [ is the set of the instances of A and it is recognizable in polynomial time.

o Guven a instance x of 14, sols(z) denotes the set of feasible solutions of x. An polynomial p
exists such that, for any x and for any y € soly(z), |y| < p(|z|). Moreover, for any x and for
any y such that |y| < p(|z|), it is decidable in polynomial time whether y € sola(z).

e Gwen an instance x and a feasible solution y of x, ma(x,y) denotes the positive integer
measure of y. The function m is computable in polynomial time and is also called the objective
function.

e Goal € {max,min}.
The class NPO is the set of all NPO problems.

Definition 2 An NPO problem A is said to be polynomially bounded if there is a polynomial
p such that opt 4 (z) < p(|z|) for all x € 14.

Definition 3 Let A be an NPO problem. Given an instance z and a feasible solution y of x, the
ratio bound of y (with respect to x) is defined as

ma(z,y) optA(lf)> '

RA(Q?» y) = max ( optA(’J?) ’ m(:u y)

The ratio bound is always a number greater than or equal to | and is as close to [ as the solution
is close to an optimum solution.

Definition 4 Let 7 : N — [1,00). We say that an algorithm T for an optimization problem A is
r(n)-approximate if, for any instance x of size n, the ratio bound of the feasible solution T (x) with
respect to © is at most r(n). If a problem A admits an r-approzimate polynomial-time algorithm for
some constant r > 1, then we say that A belongs to the class APX.

Definition 5 An NPO problem A belongs to the class PTAS if it admits a polynomial-time appro-
zimation scheme, that is, an algorithm T such that, for any instance x of A and for any rational
r > 1, T'(z,r) returns a feasible solution whose performance ratio is at most r in time bounded by
¢ (|z|) where g, is a polynomial.

Definition 6 ([CKST95, Tre96]) Let A and B be two NPO problems. A is said to be AP-
reducible to B, in symbols A <ap B, if two functions f and g, and a positive constant « exist
such that:

1. For any x € I4 and for any r > 1, f(z,r) € Ig.

2. For any x € Iy4, for any r > 1, and for any y € solg(f(z,r)), g(z,y,r) € sola(z).
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3. f and g are computable by two algorithms Ty and T,. respectively, whose running time is
polynomial for any fized r.

4. Forany x € I4. for any r > 1, and for any y € solg(f(z,r)).

Rp(f(a.r),y) <rimplies Ra(z,g(x.y, 7)) < 1+ a(r —1).

Sometimes (f, g, a) is called an a-AP-reduction from 4 to B, and we write A <%, B.

According to the above definition, functions like 21/ =1 or n/("=1) are admissible bounds on
the computation time of f and g, while this is not true for functions like n” or 2". Therefore the
computation time does not increase when the ratio bound decreases. As a result the AP-reducibility
preserves membership in PTAS and is efficient even when poor ratio bounds are required (to preserve
membership in logAPX and polyAPX). As far as it is known the AP-reducibility is the strictest one
appearing in the literature that allows to obtain natural APX-completeness results (for instance.
the APX-completeness of Max Sat).

Definition 7 ([CGMS83]) A 1-constrained spanning tree problem is that associated to the
restriction (C', A) and denoted by (C', A), where A € {<, >} a relational symbol and (' is a integer
valued function defined over the set of all pairs (T.p) such that T is a tree and p is a verter of T
called root (it is optional in the notation).

In its decision version the question is: Is there a spanning tree T of GG such that C' (T, p) AW ¢

Definition 8 ([CGM86]) A weighted 1- constrained spanning tree problem is denoted by
(R.C.A) with R C Z. It is associated to a restriction (R.C'.A) and «a integer valued function
w:E — R. where C' and A are as defined in Def 7.

Definition 9 A weighted [-constrained spanning tree problem is uniform when B = {1}.

3 The Maximum Weighted Balance Problem

Maximum Balance problem is a l-constrained spanning tree problem associated to network de-
sign. As a direct application we can mention the partitioning of a network into two connected
balanced components. In the study of its computational complexity are important the analyses of
function maxflow(T) showed in [CGMS80. CGMS83. C'GMS6]. This function is defined as follows:
maz_flow(T) = max.er [w(e) - f(e,T)], where f(e.T) denotes the number of paths which connect
pairs of vertices and pass through of a common edge e (flow through of edge e).

3.1 A Brief Report

The Balance problem is the uniform case of max_ flow(T). As a consequence, the NP-completeness
proof showed in [CGMS80] to ({1}, maz_flow(T), <) is also sufficient to classify (Balance(T), <)
as an NP-complete problem. In addition to that, the intractability of (Balance(T),>) was proved
in [CGMB83]. :

In [CGMN86] it was observed that if (R,Balance(T),<) and (R.Balance(T),>) are NP-complete
for R = 1 then they are strongly NP-complete when R = IN or R = Z. Besides, it is possible to
extend these considerations to graphs with weighted vertices [Sal96]. The NP-completeness proof
is the same. All we need is to consider all vertices with weight 1 and to conclude that an extension

to IN or Z results in a strongly NP-complete problem in those cases. S



The optimization version of (Balance(T),>) is the Maximum Balance or MAX Balance. It
searches for a spanning tree 7 which maximizes the function Balance(T) over all spanning trees T
of G. It means, '

Bal 7%) = ma 2, T) = T)="b".
alance(T™) max fle,T7) Iax max fle,T)
If we let e = (z,y) be an edge of a spanning tree T of ¢, N, and N, be the number of vertices of
two subtrees of 7" obtained by removing edge e, then we can define f(e,T) = N, - N,, where we
consider the first tree T, containing = and the other T} vertex y.
A detailed survey of the Balance problem can be found in [Sal96].

3.2 A New Definition of the Problem

In order to consider graphs with weighted vertices we can generalize N, and N, to denote the sum
of weights of the vertices in the subtrees T, and 7. It means define f(e,T) = .S, - Sy, where 5,
and 5, are the mentioned sums.

Observation 1 Balance(T) is a function of type f(t) = t(s —t), which strictly increases in the
interval (—oo, [s/2]). As a consequence, the mazimum value is reached at t = |s/2].

We can now observe that for each edge ¢ of T', we have S, < |s/2] and S, > [s/2], or wice
versa. Without loss of generality, we assume that S, < [s/2].

We also realize that .S, is uniquely determined by S,. As a result, we can specify the maximum
number of paths which connect pairs of vertices and pass through a common edge e only maximizing
Balance(T) defined as follows:

Balance(T) = max.cr S, = maz.er Z w(u),
uETm

where w(u) indicates the weight of vertex wu.

Definition 10 MAX Weighted Balance is an NPO problem with:

e Instance: an undirected connected graph G = (V,E) with edge set E and vertez set V =
{v1, ..., vn} labeled with integers w(vy), oy W) smaller or equal to |M/2| and such that
n
iw(v) =M.

e Feasible Solution: a spanning tree T of (5.
e Objective Function: Balance(T) = maz.crS,; = mazeer 2 vieT, W(vi)-

e Goal: mazimization

The optimization problem defined this way is equivalent to that using objective function Balance(T) =
MaTeeT Sz Sy, for which it has been shown [Sal96] that there is a 9/8-approximate polynomial-time
algorithm for instances with polynomially bounded positive weights.

An open question is if MAX Weighted Balance with arbitrary weights belongs to APX. In
this paper, we answer this question for the case when only positive weights are allowed.
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Figure 1: Interval [
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4 Owur reduction

In this section we introduce a polynomially bounded weighted version of the Maximum Weighted
Balance problem and we reduce MAX Weighted Balance to it.

At first, note that 1 < mazeer Y o7, w(uw) < [M/2]. By Obs. 2, we can assume that 1 <
Sn=t < |M/2].

Observation 2 In Sec. 3.2 we define S, for each edge € of T. In other words, St ford = 1,....,n-1.
Thus, without loss of generality, we now specify that S?~1 = maz{S.}.

Let us now consider a polynomially bounded version of the MAX Weighted Balance (MWB),
called MAX Polynomially Bounded Weighted Balance (MPBWB). In order to get it we use
the scaling technique in a way which generalizes that applied by Crescenzi and Trevisan [CT94] to
define MAX Polynomially Bounded Weighted SAT.

We have to look for the optimum in the interval 1,..., [M/2] and the reduction to MPBWB
maps this interval into 1,..., |n/2]. Before showing it we prove some claims.

Claim 1 Vz € R, | 1] = |Z].

Proof of Claim 1. Assume that 2 = n 4+ w with n = [z] and 0 < w < 1. Thus 5 [%J + %
Because if 7 is even then 5 = |5 ], otherwise 5 = [5] + %
Asaresult Z< |2/ +3+4=> 2] <E<|2]+1=15]= L%J:L%—LJ )

Claim 2 Vo € R, 2(2] < o] <2[%] + 1.

Proof of Claim 2. Observe that Vn € N,y € R n|y] < [ny] < nly] + (n —1).
In fact, assume that y = m + w with m = |y] and 0 < w < 1. Thus ny = nm + nw where
0 < nw < n. Then we have n|y| < [ny| < nly] +n=nly] < [ny] < nly] + (n—1).

Now we consider n = 2 and y = § and conclude our proof. a
Intuitively the MPBWB is obtained by splitting the interval {1,2LM/2J + %), which is

an interval containing all possible measures of solutions of MWB, into j 4+ 1 intervals [, =

) : ;
L%J,Q‘ LM/QIPJJ + LL =7 JJ> fors=0,..,jandt =0, ..., k. Where j = min{h | [Jﬂz,{—zij 1s equal
PYi

to 1} and k = min{h | [Mz/h_zlj is equal to 1}.
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After that, each I is subdivided into | 7?2/3 | intervals

JEUCIN | JE/EIES QY
9s s L n/2 J ' 28 s L n/2 J ?
2t ot
for i, = 0. ... |, [L%/tﬂj such that any solution in a interval i, is assigned a new measure equal to

L%ij + 1, as showed in Figs. 1, 2, 3 and 4.

Observe that each I strictly contains possible values to mpypeive that we are interested. In
other words, using Iy we map the value [M/2] and with I, for s = 1, ..., j we map the values
ranging from [MJ to 2 - Ll\—{ﬁlj

Note that only if M = n we have J = u, otherwise when M > n we need to determine how to
continue our partition until to reach the value j. This situation is explained in Fig. 4. when we

indicate how to map /7, for s = u. ....j into the same interval “ L’;/}CZJJ‘I LU;/A.ZJJJ.
Formally, MPBWB and MWB are equal except for the measure function which is defined as
follows.
o ln/2) | (5, | L4/2]
mypewi(a. 1) = maz.cr| I’;/tzJJ + LL = JL( ]\é’!zLJ . J)J
. n/2 gn=1_ AM/‘Q
= LLHQ/{ZJJ + LL z J(EIMP JL 2 J)J for all pairs (s,t).

We denote myppwp(a.T) as the measure function of MPBWB. According to the above
definition. for any instance a of MPBWDB and for any spanning tree 7', mprppiwpg(a. T) < /2]
and this problem is indeed polvnomiallv bounded.

Theorem 1 MWB <,p MPBWP

Proof. Let a = (V,E, wy,...,w,, M) be a instance of MWB and T a spanning tree problem
such that Ry ppwa(a. T) < r. Moreover. let

i R i )

v ey s
[L—‘LH/Q J+irs
Thus Ryppwr(a. T) = L—W and

Ryws(a,T) = Zowel),

(L g 4 L2 L2 g IM)2)
oy
VAL (LR 22T
ey

ot

AN

L%J (mﬂl—/ﬂm

:Rl T
mpewa(a.T) + zT+Ll”—/2iJ L



< Rympewa(a,T) + .
ot
By the construction process already illustrated, we have [J-"Z#-LJ > 1= ﬁ <lfort=0,..,
k. Thus, Rywg(a,T) < Rupews(e,T)+1= Ryws(a,T) <r+1=1+ oy (r=1)
Now we define a AP-reduction between MWB and MPBWB.
1. For any a € Ipywp and for any r > 1, f(a,r) = a.

2. Forany z € Iywp = IppBwB, forany r > 1 and for any T € solpypews(f(a, 7)), 9(a, T,r) =
T.

3. a= (Til)

Assume now r > 1, let a be an instance and T a solution such that Ry;pewe < . Then we

show that .

r=1)

Then the AP-conditions are satisfied and that concludes our proof. a

Rywp(a,T)<r+1=1+

(r=1)=1+a(r-1).

5 MWB Belongs To APX

At first, we show that MPBWB has a 2-approximate polynomial-time algorithm. In order to get
1t we modify the approximate solutions introduced in [GMM95] as follows.
Foreachi=1,...,n-1let T and Tiﬁ be two trees obtained from 7' by removal of edge ¢ (any orde-
ring of the edges from 1 to n - 1 is acceptable here); moreover set a; = | L7;/3J |1+ L%J(S‘;_L%“J
ey

and ; = M — «;. Then we have o; < [n/2] and 3; > M — Ln/QJ
Using that approach, we substitute in the approximate solution to 2-connected graphs the fol-
lowing points:

1. The first optimality test [a,—1 — ,,_1| < 1 is replaced to |a,_; — Bu-1l=M —2-|n/2].
2. The update condition a,_1 + a; < [n/2] or a1 < B3;/2 is restricted to a,_q + oy < |n/2]
We denote the modified algorithm by MazBal2yppwr and now we are able to prove Teo. 2.

Observation 3 By the construction process of MAX Polynomially Bounded Weighted Ba-
lance we have that mpyrppwB = a1 and its optimum value is reached when Sn=l = | M/2]| which
implies o,y = [n/2].

Theorem 2 Let k > 2. For any 2-connected graph G algorithm MazBal2ppgwp returns in
polynomial time a spanning tree T of G whose measure b is at least 1/k times the measure b* of an
optimum solution tree T*.

Proof. If |ap_1 — 1| =M =2 |n/2], ie., if ay_q = |n/2], then mpyppwR is maximum and
T =T
218



If a1 > Pn—1/k we conclude that

b* _ muypewe(TY) - [n/2] P k-|n/2]

— <k,
b mypewB(T) = an-1 T Buoa

and T is the required approximate solution.

Otherwise suppose a,_1 < 3,,_1/k and therefore o; < a,,_1 < ﬁ"k‘l < % foreachi=1,...n- 1.

Observe that from |e,—; — J,_q] > M — 2 [n/2]| and w(v;) < | M/2] for i = 1,.... n its
impossible a tree T,J_1 consisting only of vertex y. Therefore spite of our modification exists an
edge e as specified in the algorithm, since the graph is 2-connected and the removal of y cannot
disconnect it.

If ap,_1+a; < [n/2] then the updating operation strictly increases the value of mpypewB (recall
the constricting process of this objective function) from a,_; to (a,_; + ;).

Otherwise, if a,,_1 + a; > [n/2], we derive that

Qpor +a; > [n/2] = a; > [n/2] — @,y
Qpoy 2 0 2> [71/2] - Qg

20n—1 Z |’n/21 = Oy Z [Il£21
Based on that inequality we have

b* _[n/2] _In/2) _ [n/2] _ 2 .
— < < < [n/2] - 2] 2

b~071—1_%d_%1_

Now if we consider the approximate solution to any connected graph presented by Galbiati et
al. [GMM95]. by Obs. 3 we can maximize myspgy g searching for an edge ¢ whose sum of weights .5,
is maximum. As a consequence that algorithm can be used with a slight modification. It means that
the 2-connected solution used is replaced bv Maz Bal2 ;pswp. Because of this dependence the new
algorithm becomes a solution preserving approximation within 2. Despite the new approximation
constant the correctness proof of the algorithm remains equal.

Based on the above results and our AP-reduction. we can conclude the existence of a 3-
approximate polynomial-time solution for MWB.

6 Conclusions and Future Work

Our main result is MAX Weighted Balance € APX in the case of positive weights. To show that.
we did the following:

* We introduced a new but equivalent definition of MMAX Weighted Balance;

* We applied the scaling technique used by Crescenzi and Trevisan [('T94] to define MAX
Polynomially Bounded Weighted Balance;

* We defined an AP-reduction from MAX Weighted Balance to MAX Polynomially
Bounded Weighted Balance, and _

* We presented a 2-approximate polynomial-time algorithm for MAX Polynomially Boun-
ded Weighted Balance, which in turn implies a 3-approximate polynomial-time algorithm for
MAX Weighted Balance.

Next, we intend to extend the results introduced by Crescenzi and Trevisan [CST96] to “ni-

ce” subset problems. They studied the relative complexity of the arbitrarily weighted version, the
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polynomially bounded weighted version,and the unweighted version of that class of problems. Sur-
prisingly, they showed that for “nice” subset problems the approximation threshold was exactly the
same for all three versions. We conjecture that it is also valid for a different kind of problem such
as MAX Weighted Balance. The main result of this paper is a basic requirement to accomplish

that.

Acknowledgements

The authors would like to thank Luca Trevisan for helpful discussions. Thanks also to Airton Castro
for his remarks.

References

[ACP95] G. Ausiello, P. Crescenzi, and M. Protasi. “Approximate Solution of NP Optimization
Problems”. Theoretical Computer Science, 150(1):1 — 55, 1995.

[CGMB80] P. Camerini, G. Galbiati, and F. Maffioli. “Complexity of spanning tree problems: Part
I”. Buropean Journal Oper. Res., 5:346 — 352, 1980.

[CGMS83] P. Camerini, G. Galbiati, and F. Maffioli. “On the complexity of finding multi-

[CGMS6]

[CKST95]

[CST96]

[CT94]

[GMM95]

[Sal96]

[Tre96]

220

constrained spanning trees”. Discrete Applied Mathematics, 5:39-50. 1933.

P. Camerini, G. Galbiati, and F. Maffioli. “The complexity of weighted multi-constrained
spanning tree problems”. Colloguia Mathematica Societais Janos Bolyai. 44:53-101.

1986.

P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. “Structure in Approximation
Classes”. In Proc. of the st Combinatorics and Computing Conference, LNCS 959,
pages 539 — 548. Springer - Verlag, 1995.

P. Crescenzi, R. Silvestri, and L. Trevisan. “To Weight or not to Weight: Where is the
Question?”. In Proceedings of the Jth Israeli Symposium on Theory of Computing and
System (ISTCS). IEEE, 1996.

P. Crescenzi and L. Trevisan. “On Approximation Scheme Preserving Reducibility and
Its Applications”. In Proceedings of 14th Conference on Foundations of Software Tech-
nology and Theor. Comp. Science, pages 330 — 341. LNCS 880, Springer-Verlag, 1994.

G. Galbiati, F. Maffioli, and A. Morzenti. “On the Approximability of some Maximum
Spanning Tree Problems”. In Second international symposium of Latin American Theo-
retical INformatics, number 911 in Lectures Notes in Computer Science, pages 300 — 310,
Springer-Verlag,Berlin, 1995.

L. Salgado. “Aproximabilidade de problemas de Otimizacao NP-completos em grafos”.
Dissertacao de mestrado, Departamento de Informdtica, Setembro 1996.

L. Trevisan. “Reductions and (Non-)Approzimability”. PhD thesis, Dipartimento di
Scienze dell’Informazione - Universita Degli Studi Di Roma “La Sapienza”, Via Salaria
113, 00198 Roma, October 1996.



